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Abstract—We study the problem of predicting the viewing
probability of different parts of 360◦ videos when streaming
them to Head-Mounted Displays (HMDs). We propose a fixation
prediction network based on Recurrent Neural Network (RNN),
which leverages sensor and content features. The content fea-
tures are derived by Computer Vision (CV) algorithms, which
may suffer from inferior performance due to various types of
distortion caused by diverse 360◦ video projection models. We
propose a unified approach with overlapping virtual viewports
to eliminate such negative effects, and we evaluate our proposed
solution using several CV algorithms, such as saliency detection,
face detection, and object detection. We find that overlapping
virtual viewports increase the performance of these existing CV
algorithms that were not trained for 360◦ videos. We next fine-
tune our fixation prediction network with diverse design options,
including: (i) with or without overlapping virtual viewports, (ii)
with or without future content features, and (iii) different feature
sampling rates. We empirically choose the best fixation prediction
network and use it in a 360◦ video streaming system. We conduct
extensive trace-driven simulations with a large-scale dataset to
quantify the performance of the 360◦ video streaming system
with different fixation prediction algorithms. The results show
that our proposed fixation prediction network outperforms other
algorithms in several aspects, such as: (i) achieving comparable
video quality (average gaps between -0.05 and 0.92 dB), (ii)
consuming much less bandwidth (average bandwidth reduction
by up to 8 Mbps), (iii) reducing the rebuffering time (on average
40 sec in bandwidth-limited 4G cellular networks), and (iv)
running in real-time (at most 124 ms).

Keywords-360◦ video, Virtual Reality, HMD, prediction, ma-
chine learning, RNN, tiled streaming

I. INTRODUCTION

Commodity Head-Mounted Displays (HMDs), e.g., Oculus

Rift [1], HTC Vive [2], Samsung Gear VR [3], have become

more and more popular. While 10.1 million HMDs were sold

in 2016, a market research firm predicts a staggering 58%

annual growth rate of HMDs sales, predicting for almost 100

million units to be shipped in 2021 [4]. HMDs dictate new

media content for an immersive experience. For example,

omni-directional cameras record scenes from all directions

into 360◦ videos, which are streamed and played to a viewer

Copyright (c) 2019 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received June 2018; revised February 2019; revised June 2019;
accepted July 2019.

C. Fan, S. Yen, and C. Hsu are with Department of Computer Science,
National Tsing Hua University. C. Huang is with Department of Computer
Science, National Chiao Tung University.

wearing an HMD. The viewer may rotate his/her head during

the playout to view different parts of the 360◦ video, as

if he/she was at the scenes captured by the omnidirectional

camera.

360◦ videos have, in fact, gradually gotten into our daily

life. Merely after 1.5 years of rolling out 360◦ video supports,

Facebook reports that more than 1 million 360◦ videos have

been posted [5]. Such a rapid adoption can be attributed to

the improved viewing experience: a user study shows that: (i)

360◦ videos attract 8 times more web clicks, and (ii) viewers

of 360◦ videos watch 29% longer on average, compared to

conventional videos [6]. The momentum of the increasing

popularity of watching 360◦ videos with HMDs shows no

indication of slowing down in the coming years.

Streaming 360◦ videos to HMDs is, however, quite chal-

lenging for two reasons:

• 360◦ videos contain much more information than conven-

tional ones, and thus 360◦ videos have higher resolutions

and are encoded at higher bitrates. 360◦ video streaming

systems, therefore, are vulnerable to insufficient and

unstable bandwidth due to limited line speed, significant

cross traffic, or high wireless dynamics. Hence, efficiently

reducing the transmitted data without degrading the video

quality is crucial for the success of 360◦ video streaming

systems.

• 360◦ videos need to be projected from a spherical to

flat surface before being compressed, since video codecs

only support rectangle videos. Different projection mod-

els have different pros and cons, e.g., complexity, pixel

density, and shape distortion [7]. Therefore, existing

Computer Vision (CV) algorithms designed and trained

for 2D images/videos do not perform well with 360◦

images/videos. Extra care is needed to apply the rich

body of existing CV algorithms on to 360◦ videos for

improving the performance of 360◦ video streaming and

other similar systems.

We tackle the above two challenges in this article as follows.

First, HMD viewers only get to see a small viewable region,

called viewport, of each 360◦ video at any moment. Therefore,

streaming whole 360◦ videos wastes precious bandwidth on

many unwatched regions. A better solution is to predict viewer

fixation, which can be quantified by the viewing probability

of different regions, and only transmit the regions with high

viewing probability. In particular, we propose to use a Re-
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Fig. 1. A sample image: (a) seen in HMDs; distorted images due to: (b) equirectangular projection and (c) rhombic dodecahedron projection.

current Neural Network (RNN) that considers both sensor and

content features to predict the viewer fixation, where the sensor

features are extracted from the HMDs and the content features

are detected from the video content via CV algorithms. To

systematically organize video content, we adopt tiling [8] to

split videos into rectangular regions, or tiles, where tiles can

be independently encoded/decoded.

Since the content features, such as saliency map [9] and

motion map [10], are outputs of CV algorithms, they are

vulnerable to distortion attributed to projection models. Such

distortion can be further classified into: (i) shape distortion

and (ii) ill segmentation, which are illustrated in Fig. 1.

Compared to the image seen in an HMD (Fig. 1(a)), the image

from equirectangular projection (Fig. 1(b)) suffers from shape

distortion, which is especially severe for objects close to the

north and south poles. On the other hand, the image from

rhombic dodecahedron projection (Fig. 1(c)) suffers from ill

segmentation, where an object is cut into smaller pieces in

different parts of the projected image. One solution approach is

to adopt CV algorithms specifically designed for 360◦ videos

in a given (say equirectangular) projection model. However,

such CV algorithms would not work for 360◦ videos in other

projection models. Moreover, compared to CV algorithms

designed for 2D images/videos, there are only very few

CV algorithms proposed and trained with 360◦ videos [11],

[12], [13], [14]. While the number of these CV algorithms

may increase over time, they will still be outnumbered by

the CV algorithms for 2D images/videos. To overcome such

limitations, we systematically generate virtual viewports ahead

of the streaming time. Virtual viewports are carefully chosen

simulated viewports in HMDs, which are projected back to

the sphere. Therefore virtual viewports are not vulnerable to

distortion caused by projection models. By sending virtual

viewports to existing CV algorithms, we improve the quality

of their outputs, as well as that of the subsequent fixation

network.

A. Contributions

This article is extended from Fan et al. [15] to improve

the performance of the fixation prediction network by: (i)

considering future content as features, (ii) eliminating negative

effects from projection, and (iii) training and testing on a

larger dataset. On top of that, we carefully develop the virtual

viewport approach into a unified approach to turn existing CV

algorithms applicable to 360◦ videos.

More specifically, we make the following contributions in

this article.

• We propose a fixation prediction network for 360◦ videos

streamed to HMDs, which takes both sensor and content

features as inputs and predicts the viewer fixation.

• We propose a unified approach based on overlapping

virtual viewports to turn CV algorithms designed and

trained for 2D images/videos applicable to 360◦ videos.

We then use this approach to enhance the performance of

our fixation prediction network. The resulting algorithm

outperforms a state-of-the-art algorithm in the literature

in prediction accuracy.

• We employ the fixation prediction network and virtual

viewport approach to optimize our 360◦ video streaming

system. To evaluate its performance, we use a large

dataset of 50 HMD viewers and ten 360◦ videos to drive

extensive NS-3 simulations. The results show the superior

performance of our solution, e.g., compared to the base-

line approaches, our solution: (i) achieves comparable

video quality (average gaps between -0.05 and 0.92 dB),

(ii) consumes much less bandwidth (average bandwidth

reduction by up to 8 Mbps), (iii) reduces the rebuffering

time (on average 40 sec in bandwidth-limited 4G cellular

networks), and (iv) runs in real-time (at most 124 ms).

Our solution approach may also be adopted by other 360◦

video related systems.

B. Paper Organization

The rest of this article is organized as follows. Sec. II

surveys the literature. An overview of 360◦ video streaming

systems is given in Sec. III. We introduce our fixation pre-

diction network in Sec. IV. The dataset and neural network

implementations are described in Sec. V. Sec. VI presents a

unified approach to apply existing CV algorithms on 360◦

videos, and studies how it enhances the performance of our

fixation prediction algorithm. Sec. VII evaluates our proposed

solutions using detailed trace-driven simulations. Sec. VIII

concludes this article and presents future work.

II. RELATED WORK

360◦ video streaming has received much attention in recent

years [16]. In this section, we survey the literature in two

directions: (i) fixation, which is further classified into 2D

image/video saliency, 360◦ image/video saliency, and head
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movements prediction; and (ii) 360◦ video streaming, which

includes 360◦ video streaming systems and their optimization.

A. Fixation Prediction

2D image/video saliency. Conventional fixation prediction

is built on salient object detection, which has been done

on different content types, such as still images [9]. Image

saliency can be derived from low-level features, e.g., contrast,

textures, and edges [17], [18]. Several studies propose to

detect image saliency based on region-based models, which

leverages graph-based segmentations [19] or linear iterative

clustering [20]. Wang et al. [21] analyze the image saliency by

combining color and contrast with spatial priors. For example,

the saliency maps are aligned to image edges or correlated with

color distributions. Given training samples with ground truth,

the learning-based methods are getting popular because of

higher accuracy. Liu et al. [22] train learning-based models us-

ing a binary labeled dataset with low-level features. Recently,

deep learning has become the most popular method to perform

saliency detection. For example, Convolution Neural Network

(CNN) is able to learn from low-level features parallelly, which

is suitable for vision processing. Li and Yu [23] adopt a pre-

trained CNN for extracting features in different scales and

perform regression on the inputs to produce saliency maps.

These studies, however, are designed for 2D conventional

images.

In terms of 2D video saliency, Mavlankar and Girod [24]

predict the future viewing trajectory based on extrapolation

and enhance the performance by analyzing the characteristics

of video content, such as optical flow and motion vectors.

Recently, More and more supervised learning methods are

adopted for fixation detection [25], [26], [27] to achieve

better feature extraction and prediction accuracy. In particular,

Chaabount et al. [26] predict the video saliency by developing

a CNN with residual motion as the features. Furthermore, they

adopt transfer learning to cope with the lack of large video

datasets. Their results show the positive effectiveness of the

transfer learning. Alshawi et al. [27] analyze the correlation

between the saliency of pixels and their spatial/temporal

neighbors, where the correlation is much affected by the video

characteristics. Nguyen et al. [25] note a close relationship

between image (static) and video (dynamic) saliency. Based

on the observation, they adopt both the information of image

saliency (static) and camera motion to predict video saliency

(dynamic).

360◦ image/video saliency. The saliency detection algo-

rithms specifically designed for 360◦ videos are proposed very

recently. Assens et al. [11] develop a deep CNN to predict the

scan-paths on 360◦ images. They train the prediction network

on a public 360◦ image dataset [28], which consists of 60 360◦

images and 63 participants with the trajectories of both their

head and eye movements. In particular, they perform transfer

learning by initializing the network weights from several 2D

image datasets. They further analyze the prediction under dif-

ferent sampling strategies and their results reveal that limiting

the distance between fixations can improve the prediction

accuracy. Monroy et al. [12] first map the 360◦ images to

six faces of a cubic projection, which reduces the distortion

close to poles compared to the equirectangular projection.

Each face is detected by a conventional saliency detection

network with spherical coordinates for locating the face on the

sphere. Finally, six detected saliency faces are combined into

a single saliency map for the 360◦ image. Similarly, Cheng

et al. [29] also map the 360◦ videos into cubic projection for

eliminating the distortion. Some tricks, e.g., wider angle for

each face and temporal model development, are introduced to

improve the saliency prediction accuracy. Zhang et al. [30]

develop a spherical CNN with spherical Mean Squared Error

(MSE) loss function, which takes the angle to the center of the

sphere into considerations. Besides, the starting position for

the viewer to watch the 360◦ video is also considered as an

important feature in their model. These studies [11], [12], [29],

[30] develop and train neural networks to predict the saliency

for the 360◦ videos. We note that the resulting prediction

algorithms are locked in with projection models, compared to

our unified approach. Nevertheless, as a future task, we may

integrate their proposed solutions with our proposed fixation

prediction network for a given projection model.

Fixation/head movement prediction in HMDs. Our work

goes beyond saliency detection to predict viewer fixation for

360◦ video streaming to HMDs. There are a few recent studies

that share similar goal to ours. Ban et al. [31] propose to

predict the viewer’s head movements in three steps. First, an

initial prediction is performed based on the viewer’s previous

viewing position using linear regression. Second, K-Nearest-

Neighbors (KNN) are calculated to find the nearest K view

points among all other viewers. This is under an assumption

that most viewers would be interested in the same objects/areas

in 360◦ videos. Last, the viewport region of the K nearest

view points are calculated to finalize the predicted viewing

probability of each tile. This study is considered as one of

our baselines for comparisons. Not only consider the previous

viewing positions, Xu et al. [32] further take video content

into account. In particular, they develop the head movement

prediction network based on Reinforcement Learning (RL)

considering the previous viewer orientation and frame content.

The network aims to predict which direction among the

eight directions (top, left, bottom, right, and the direction

between each two of above directions) the current viewer will

move to. However, their study only predicts the future head

moving direction, which may be insufficient to be applied to

tiled streaming systems. Nguyen et al. [33] employ the same

fixation prediction network architecture as Fan et al. [15] that

considers both the orientation and the detected saliency on

frames. They make three major changes: (i) they develop their

own image saliency network trained on their own 360◦ video

viewing dataset, (ii) they do not consider the motion map

in our work, and (iii) they represent the orientation data as

orientation maps instead of the raw sensor values of yaw, roll,

and pitch used in our work.

B. 360◦ Video Streaming

360◦ video streaming system. Gaddam et al. [34] propose

an interactive panoramic video streaming system with a tile-

based encoder. They gradually decrease the quality from the
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Fig. 2. Architecture of the proposed 360◦ video streaming server. A tile-based streaming example is shown.
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center of the current viewed region. This approach saves

bandwidth while providing smooth quality degradation. Spatial

Relationship Description (SRD) [35], an extension of DASH

(Dynamic Adaptive Streaming over HTTP), enables arbitrary

spatial access on video streaming. Several studies [36], [37]

adopt SRD as a new way to realize tile-based video streaming

for higher flexibility in terms of spatial relationship and

encoder/decoder supports. Zhou et al. [38] analyze an undocu-

mented projection model, offset cubic projection, implemented

in Oculus HMD streaming system. They find that the pro-

jection offers comparable video quality when it saves up to

16.4% in bitrate. Lo et al. [39] build a 360◦ video streaming

system on cellular networks and compare the performance of

transmitting all tiles versus viewport tiles only. Graf et al. [40]

describe different tiled streaming strategies for 360◦ videos

and conduct experiments to measure the bitrate overhead and

bandwidth consumption under different tiling strategies.

Optimization. Alface et al. [41] propose to multicast 16K-

resolution videos to users by streaming at 4K-resolution for

user viewport and 1K-resolution for the whole panorama

shared by all viewers. Xiao et al. [42] propose to download the

360◦ videos with optimal tile bitrates produced by an Integer

Linear Programming (ILP) problem. Their proposed solution

improves the bandwidth consumption compared to general

fixed-tiling solution by up to 47%. Duanmu et al. [43] formu-

late the buffer scheduling problem of prioritized 360◦ video

streaming to improve video quality under restricted bandwidth.

They propose to guarantee smooth playout by giving the

highest priority to the base tiles of the whole panorama at a

lower resolution. The residual bandwidth is used for enhanced

tiles of predicted viewports at a higher resolution. Sanchez

et al. [44] model the rate-distortion relation according to the

temporal and spatial characteristics of the video content. Their

results demonstrate that the tiling schemes need to be carefully

optimized for 360◦ videos. Several studies [36], [37] propose

to only stream tiles within user viewports to the client using

DASH. In contrast to requesting tiles one by one, Petrangeli

et al. [45] propose to leverage push-based HTTP/2 protocol to

reduce network overhead. Qian et al. [46] study 360◦ video

streaming over cellular networks. They conduct measurement

study on famous streaming platforms: YouTube and Facebook.

Their work adopts a prediction algorithm similar to Mavlankar

and Girod [24] for saving bandwidth consumption. Bao et

al. [47] develop a hybrid unicast and multicast framework for

360◦ video streaming. They take the viewers’ historical head

movements and network conditions to determine the communi-

cation model of each area. In particular, the overlapped regions

are transmitted using multicast so as to reduce the bandwidth

consumption. Lo et al. [48] consider edge-assisted 360◦ video

streaming, in which the edge server either: (i) combines the

tiles into a new 360◦ video stream or (ii) transcodes 360◦ video

into a viewport video stream. They also propose an algorithm

to dynamically switch each client between these two edge

processing approaches according to the video characteristics

and resource constraints for optimal overall video quality. In

contrast to these systems work, our article focuses on the

optimization of fixation prediction algorithms.

III. OVERVIEW

We present an overview of the 360◦ video streaming sys-

tems, which is optimized in the rest of this article.

A. 360◦ Video Streaming Systems

Fig. 2 presents our proposed architecture of a 360◦ stream-

ing server [15], in which we focus on the software components

related to fixation prediction. We have identified two content

features: image saliency map [9] and motion map [10] from

360◦ videos; and a sensor feature: orientation from HMDs.

We describe the software components in the following:

• Image saliency network is a deep neural network trained

to derive the image saliency map, which shows the parts

of the image that attract viewers the most.

• Motion feature detector analyzes the Lucas-Kanade

optical flow [49] of consecutive frames, because viewers

may be attracted by moving objects.

• Orientation extractor derives the viewer orientation data

including yaw, pitch, and roll, from HMD sensors.

• Feature buffer stores the features, including the saliency

map, motion map, and viewer orientation in a sliding

window, which are used for fixation prediction.

• Fixation prediction network uses content features (im-

age saliency maps and motion maps) and sensor features

(viewer orientation) as inputs to predict the viewing

probability of different regions of the next n frames.

• Tile rate selector performs rate allocation among video

tiles, which are rectangular and independently decodable

regions of a video frame. 360◦ video streaming systems

may be classified into two classes: tile-based [50], [51],

[36], [37] and transcoder-based [52], [53]. In tile-based
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Fig. 4. Our proposed fixation prediction networks: (a) orientation-based network, (b) tile-based network, and (c) future-aware network.

systems, the server encodes 360◦ videos into tiles, while

the client dynamically requests tiles at specific bitrates

for adaptation. In transcoder-based systems, the server

dynamically transcodes the viewport of each viewer on-

the-fly. For the sake of brevity, we assume tile-based

systems are used, although our solution is also applicable

to transcoder-based systems.

The interactions among these components are as follows.

The video frames are sent to the image saliency network and

motion feature detector for generating the image saliency map

and the motion map, respectively. Generating these two maps

is potentially resource demanding, and we assume that they are

created offline for pre-recorded videos. The HMD sensor data

are transmitted to the orientation extractor to derive the viewer

orientation. The feature buffer maintains a sliding window that

stores the latest image saliency maps, motion maps, and viewer

orientations as the inputs of the fixation prediction network.

The fixation prediction network predicts the future viewing

probability of each tile. The tile rate selector optimally selects

the rates of the encoded video tiles.

B. Viewport and Modeling

Different HMDs may have different viewport sizes, which

need to be systematically derived. We conduct experiments

of playing a 360◦ video with artificial grids to viewers, and

collect questionnaires to understand how to model the viewport

of commodity HMDs. We find that the viewport of existing

HMDs, including Oculus Rift, HTC Vive, and Samsung Gear

can all be modeled as a circle on sphere. Viewports could be

in different shapes on 2D projected planes. For example, a

viewport appears as an ellipse on an equirectangular projected

plane. Fig. 3 presents the viewport model of HMDs. The

viewer stands at the center of the sphere. Let α and β be the

yaw and pitch of the HMD viewport center, which are reported

from the sensors equipped by HMDs. Furthermore, we let θ be

the diameter of a viewport in degrees. Therefore, we describe

the viewport in the spherical space as fs = (α, β, θ). The mea-

sured θ values are about 100◦ (Oculus Rift), 67◦ (HTC Vive),

and 67◦ (Samsung Gear). We use 100◦ in our experiments if

not otherwise specified. We note that the parameters of other

HMDs may be derived using our experiment design.

IV. FIXATION PREDICTION NETWORKS

The core component of our proposed 360◦ streaming server

is the fixation prediction network, which is detailed in this

section.

A. Overview

The fixation prediction network is based on an RNN,

which is suitable to learn useful information from a time

series of video frames. However, basic RNNs suffer from the

problem of gradient vanishing during back-propagation [54].

This prevents the RNN from learning long-term dependencies

effectively. Hence, we chose to use the LSTM (Long Short

Term Memory) network [55]. LSTM solves the problem

by using gates in its neurons, and learns more long-term

dependencies among video frames.

In this article, we propose three neural networks: (i)

orientation-based, (ii) tile-based, and (iii) future-aware. The

orientation-based network takes the orientation values of the

past frames, which are read from HMD sensors, as the

sensor features. The tile-based network considers the viewing

probabilities of tiles, which have already been projected from

the raw orientation values, of the past frames as the sensor

features. Both networks take the saliency and motion maps

of the past frames as the content features. Our preliminary

study [15] demonstrates the higher prediction accuracy and

efficiency of the orientation-based network compared to the

tile-based network. Therefore, we extend the orientation-based

network into the future-aware network in this article. The

future-aware network considers the content features of not

only the past frames but also future frames. This is feasible

because all the video frames are pre-stored on the server, thus

the content features can be extracted and saved beforehand.

In addition to the future-aware network, we enhance the net-

works presented in our previous study [15] in two ways. First,

we reduce the feature sampling rate to 1 frame-per-second

(fps). The intuition behind this decision is that the changes of

video content and viewer orientation are typically small over

a short time period. Therefore, although lower sampling rates

may impose small negative impacts on prediction accuracy,

they significantly reduce the resource consumption. Second,

the proposed networks predict the viewing probability of each
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tile within a number of frames instead of just a single frame.

The rationale is that in most practical streaming systems, each

client asks for a few consecutive frames in a request. For

example, a DASH client asks for a segment of video frames

in each request. Our pilot experiments show that the two

enhancements lead to: (i) at least three times of training time

reduction and (ii) on average 1.4% accuracy boost, compared

to our original networks [15]. We present the three resulting

networks below, while more performance results are given in

Sec. VII.

B. Orientation-Based Network

Fig. 4(a) presents the orientation-based network. Let Ff be

the features of frame f , which include the image saliency map,

motion map, and viewer orientation. The saliency maps and

motion maps are downsampled to 64x64 to avoid excessive

computation loads. The viewer orientation is the sensor data,

which consists of x, y, z, yaw, roll, and pitch, read from

HMD sensors. These features are concatenated and fed into

the network. Let m and n be the number of past frame samples

that contribute the features to the network and the number of

the predicted frames, respectively. We let P t
f+1,f+n denote the

predicted viewing probability of tile t within frame samples

f+1 to f+n. That is, if the tile is predicted to be viewed for

x times within these frames, the predicted viewing probability

of this tile is x
n

. We collectively write the probabilities of all

tiles within frame samples f + 1 to f + n as Pf+1,f+n.

C. Tile-Based Network

The tile-based network is presented in Fig. 4(b). Compared

to the orientation-based network, the tile-based network re-

places the viewer orientation with the viewing probability of

each tile. More specifically, the probabilities of tiles that are

viewed by the viewer are 1’s and others are 0’s. Similar to the

orientation-based network, the saliency maps, motion maps,

and the viewing probability of tiles from past m frames are

concatenated as features and fed into the network to predict

the viewing probability of tiles within next n frames.

D. Future-Aware Network

Fig. 4(c) presents the proposed future-aware network. It

is extended from the orientation-based network due to its

better performance compared to the tile-based network [15]. In

particular, it also takes the future content features into account.

That is, the future-aware network takes the features from

Ff−m to Ff+n as inputs to predict the viewing probabilities

Pf+1,f+n. The unknown future viewer orientation for Ff+1

to Ff+n are approximated with the last received viewer ori-

entation, if not otherwise specified, while more sophisticated

extrapolation [46] can also be used.

V. DATASETS AND NETWORK IMPLEMENTATIONS

We collected a 360◦ video dataset, which contains 50 view-

ers, each watches ten 360◦ videos [56]. In this section, we first

summarize the dataset. We next compare the performance of

the proposed fixation prediction networks using the collected

dataset.

A. Dataset

Head-Mounted Display

360 Video Player
OpenTrack

Software Development Kit

Sensor Logger Frame Capturer

Oculus Rift DK2 Oculus-SDK

Oculus Video GamingAnywhere

Hea

360° videos
Sensor Data with

Timestamps

Video Frames with Timestamps

(a)

HMD
Oculus Rift DK2

360 Video Player
Oculus Video

Frame Capturer
GamingAnywhere

Sensor Logger
OpenTrack

(b)

Fig. 5. Our testbed for collecting our dataset: (a) testbed architecture and
(b) a photo of a subject performing the experiments.

Fig. 5(a) presents the design of our testbed [15], which

consists of: (i) an Oculus Rift HMD, (ii) the Oculus Software

Development Kit (SDK), (iii) the 360◦ video player (rendering

360◦ videos in HMD and on a mirrored screen), (iv) the sensor

logger based on OpenTrack, and (v) the frame capturer based

on GamingAnywhere [57].

When a viewer watches a 360◦ video as shown in Fig. 5(b),

the rendered video is captured by the frame capturer and stored

to the disk. The viewer’s head movements, including position

and orientation, are recorded by the sensor logger. Both of

them are timestamped on the same computer. By aligning

sensor data and 360◦ videos, we know where the viewer is

watching at any moment.

We download ten 360◦ videos from YouTube, which are in

4K resolution with a frame rate of 30 fps. The videos have

diverse characteristics, e.g., computer-generated versus natural

images, and slow- versus fast-paced. We recruit 50 viewers

for dataset collection. We play all ten videos to each viewer,

which result in 500 traces in our dataset. By trace, we refer

to a combination of a viewer and a video, in the rest of this

article. For more details about the compositions of the viewers

and the format of the datasets, readers are referred to Lo et

al. [56].

B. Network Implementations

We consider the fixation prediction problem on tiles as a

multi-label classification problem and have implemented the

neural networks using Scikit-Learn and Keras. The ground

truth of the fixation prediction networks for each tile is the

fraction of frames containing the viewed tiles. This fraction

represents the importance of each tile. Using the datasets,

we sample the points within the viewport by projecting the
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TABLE I
THE PERFORMANCE OF THE PROPOSED MODELS WITH 1-SEC SLIDING

WINDOW

The Orientation-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 86.93% 0.703 85.79% 0.678

512 2 T 88.41% 0.741 87.03% 0.711

1024 2 T 89.09% 0.760 87.05% 0.732

2048 2 T 88.11% 0.733 86.67% 0.702

The Tile-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 T 84.80% 0.636 83.65% 0.610

512 2 F 84.68% 0.632 0.147 83.43%

1024 2 F 84.96% 0.636 83.75% 0.608

2048 2 T 85.15% 0.643 83.90% 0.614

The Future-Aware Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 T 88.09% 0.733 86.77% 0.706

512 2 T 88.99% 0.759 87.62% 0.732

1024 2 T 89.27% 0.767 87.77% 0.737

2048 2 F 85.65% 0.663 84.43% 0.635

orientation on the sphere to the equirectangular model. Then,

the viewed tiles are those that contain some projected samples.

For a single video frame, each tile is either watched or not,

i.e., it has a boolean viewing probability.

We use the traces from 50 viewers to train the proposed

three networks. We randomly divide the 500 traces [56] into

two subsets: 80% for training and 20% for testing. We reserve

20% of the training set for validation purpose. The networks

are trained to minimize the logarithmic loss, also known as

cross-entropy loss, using Stochastic Gradient Descent [58]

with a learning rate of 10−1. An early-stop mechanism, which

stops the training once the logarithmic loss is smaller than

a given value, is adopted to speed up the network training

and avoid over-fitting. We consider the sliding window size of

1 and 4 secs to predict the frames in the upcoming second.

To obtain the optimal parameters, we consider the number

of neurons in {256, 512, 1024, 2048}, the number of LSTM

layers in {1, 2, 3}, and the dropout in {True, False}, where

the dropout rate is 0.2.

We note that the predicted probability is a real number

between 0 and 1, and we use a threshold ρ to round it to

a boolean decision. We refer to ptf ≥ ρ as predicted tiles,

and the actually viewed tiles as viewed tiles. We let ρ = 0.5
if not otherwise specified. To select the optimal parameters

of the three neural networks, we consider two metrics: (i)

accuracy, which is the ratio of correctly classified tiles to the

union of predicted and viewed tiles and (ii) F-score, which

is the harmonic mean of the precision and recall, where the

precision and recall are the ratios of correctly predicted tiles

to the predicted and viewed tiles, respectively.

We find that the networks with two LSTM layers generally

give better performance, and thus we report sample 2-layer

results with 1- and 4-sec sliding windows in Tables I and

II, respectively. The optimal parameters and results for each

network are in bold fonts. These tables show that the future-

aware network has higher accuracy and F-score for both

TABLE II
THE PERFORMANCE OF THE PROPOSED MODELS WITH 4-SEC SLIDING

WINDOW

The Orientation-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 86.37% 0.615 83.27% 0.588

512 2 F 87.91% 0.729 86.43% 0.699

1024 2 F 86.90% 0.696 85.27% 0.658

2048 2 F 84.73% 0.634 83.61% 0.606

The Tile-Based Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 T 84.62% 0.629 83.49% 0.604

512 2 F 84.69% 0.624 83.44% 0.593

1024 2 T 85.00% 0.634 83.73% 0.603

2048 2 F 84.57% 0.623 83.38% 0.594

The Future-Aware Network

Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 84.44% 0.612 83.45% 0.589

512 2 T 88.15% 0.733 86.70% 0.701

1024 2 F 85.27% 0.648 84.18% 0.624

2048 2 F 84.80% 0.636 83.71% 0.610

sliding window sizes. Besides, with the future-aware network,

1-sec sliding window performs slightly better than 4-sec one

(accuracy 87.77% > 86.70%), yet runs 6x faster (69 versus

398 minutes). Hence, we adopt the future-aware network with

the 1-sec sliding window as our fixation prediction network in

the rest of the article.

VI. OVERLAPPING VIRTUAL VIEWPORTS

In this section, we first introduce the projection models

and discuss how they negatively affect the performance of

CV algorithms designed and trained for 2D images/videos.

We then propose overlapping virtual viewport (OVV). We

apply OVVs on three existing CV algorithms and report their

performance boosts. We then apply OVV to our proposed

fixation prediction network. Last, to validate the generality

of our solution, we evaluate it using additional videos and

viewers.

A. Projection Models

There are many projection models proposed for 360◦

videos [7], [59] in the literature, and the commonly seen ones1

are: (i) equirectangular, (ii) cubic, and (iii) rhombic dodecahe-

dron. We present the properties of individual projection models

in the following.

Equirectangular. As shown in Fig. 6(a), the equirectangular

projection projects the sphere to a cylinder. It introduces large

shape distortion at the areas close to poles (see Fig. 1(b)),

which may result in redundant data transmission and inferior

performance (for example, accuracy) of existing CV algo-

rithms.

Cubic. The cubic projection model projects a sphere to a

circumscribed cube with six square faces as shown in Fig. 6(b).

1Note that researchers and companies continue proposing new projection
models for better coding efficiency. Most projection models suffer from some
shape distortion and/or ill-segmentation, similar to the representative models
presented here.
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(a)

FrontLeft

Top

Bottom

Right Back

(b) (c)

Fig. 6. Several projection models can be used for 360◦ videos, such as: (a) equirectangular, (b) cubic, and (c) rhombic dodecahedron.

(a) (b) (c)

Fig. 7. Object detection on sample image with different projection models: (a) equirectangular, (b) cubic, and (c) rhombic dodecahedron. Only one object
is detected.

For each point on the sphere, we first find the closest face

as its corresponding face. Each face adopts 90◦ rectilinear

projection, which maps the sphere surface to a tangent plane,

where the points are projected along with the line from the

sphere center to the plane. In contrast to equirectangular,

the cubic projection model preserves the straight lines on

each face. Therefore, the cubic projection model results in no

pole distortion and reduces about 25% of the data size [60].

However, for lines or objects that span over multiple faces,

they are unnaturally, or ill, segmented at the face boundaries.

Rhombic dodecahedron. The rhombic dodecahedron pro-

jection model adopts 12 equal-size spherical rhombus.

Fig. 6(c) shows the construction of the rhombic dodecahedron,

which is an octahedron with a cube embedded in it. Two of

the four corners of each rhombus are from the cube, while

the other two are from the octahedron. We can project the

rhombic dodecahedron to a sphere surface using gnomonic

projection, which is a superset of rectilinear projection that

does not limit the degree to 90◦. One way to project pixels to

the rhombic dodecahedron is to use the great circle subdivi-

sions [61]. While the rhombic dodecahedron projection model

does not suffer from noticeable distortion, it incurs higher

computational overhead.

For the sake of understanding the distortion level, we use

YOLO9000 [62] to perform object detection on different

projection models. Fig. 7 shows sample object detection results

with: (i) equirectangular, (ii) cubic, and (iii) rhombic dodeca-

hedron projection models. This figure shows that only a single

object is detected. This can be attributed to shape distortion

and ill segmentation.

 !

 !
 "

(a)

 !

 !

 "

(b)

Fig. 8. Examples of the OVV: (a) (ds, dv) = (30◦, 60◦) and (b) (ds, dv) =
(45◦, 90◦).

B. Overlapping Virtual Viewport (OVV)

We propose to leverage OVV to cover the whole sphere

space so as to turn CV algorithms designed and trained for 2D

images/videos applicable to 360◦ videos. A virtual viewport

is a square tangent to a point on the sphere surface. OVV is

defined by dv and ds, where dv represents the viewable angle

at equator of each virtual viewport, and ds is the sampling

angle of virtual viewports. Both dv (size) and ds (density)

are in the unit of degrees. Fig. 8 illustrates example OVVs

with (ds, dv) = (30◦, 60◦) and (ds, dv) = (45◦, 90◦). In the

figure, we only plot two sample virtual viewports for brevity.

However, each intersection point on the sphere surface is the

center of a virtual viewport, which is tangent to the sphere

at that point. Therefore, each 360◦ sphere has 2π
ds

π
ds

virtual

viewports.

OVV eliminates the shape distortion and ill segmentation

by: (i) extracting virtual viewports, which are the actual views
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(a) (b) (c)

Fig. 9. Object detection on sample virtual viewports of OVV: (a) (yaw, pitch) = (315◦, 90◦), (b) (yaw, pitch) = (0◦, 90◦), and (c) (yaw, pitch) = (90◦, 90◦).
More objects are detected with OVV, compared to Fig. 7.
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Fig. 10. Our proposed OVV improves the performance of the pre-trained CV algorithms: (i) saliency detection, (ii) face detection, and (iii) object detection.

seen in HMDs, and (ii) oversampling (overlapping) virtual

viewports to increase the chance for CV algorithms to identify,

for example, objects. Fig. 9 shows the sample results of

detecting objects with OVV, which gives more recognized

objects than the original approach reported in Fig. 7.

C. Validations with Real Computer Vision Algorithms

We consider three representative CV algorithms: (i) saliency

detection, (ii) face detection, and (iii) object detection. In the

following, we describe these algorithms and report the benefits

of applying OVV with (ds,dv)=(45◦,90◦) on them. The ten

videos used for validation are from the dataset mentioned

above [56], and the ground truth is tagged by our group.

Saliency detection [9] calculates the attraction level of

each pixel of images. This can be done based on analyzing

image contrast, detecting objects, and locating outstanding and

meaningful parts of images. We adopt a pre-trained deep multi-

level network [63] that takes low- to high-level features to

perform saliency detection with diverse projection models. To

compare the performance of the saliency detecting algorithm

on different projection models, we use true viewports from

our traces to quantify the quality of the resulting saliency

maps. For each projection model, we normalize the detected

saliency map so that the sum of the saliency values is 1. Then

we sum all the detected saliency values within the actual

viewport at each frame of each projection model, and refer

to it as the saliency scores. For OVV, we perform saliency

detection on individual virtual viewports and normalize the

overlapped regions among virtual viewports for fair compar-

isons. Fig. 10(a) plots the total saliency scores with 95%

confidence intervals under different projection models. This

figure shows that OVV generally has higher saliency scores

than other projection models. Besides, the p-value from one-

way analysis of variance (ANOVA) test is only 0.012 (≤ 0.05),

which shows the statistic significance of the performance

difference.

Face detection [64] overlays rectangles that contain human

faces on images. This can be done by first extracting features

and then performing cascades detection, which is to check

the features with classifiers stage-by-stage. Once the checking

process fails at a stage, it terminates. A face is detected

only if all stages are passed. We implement face detection

based on Haar Cascades classifier using OpenCV [65] with

a scaleFactor of 1.3 and a minNeighbors of 5. We perform

face detection on 3 (out of 10) videos that contain people.

We record the number of correctly detected faces of each

projection model and plot the total number of each video in

Fig. 10(b). This figure shows that OVV detects up to 300 more

faces compared to other projection models.

Object detection [66] highlights the regions that contain

real-world objects, such as dogs, bicycles, and chairs. We

adopt the YOLO9000 network [62], which is trained by Ima-

geNet [67] and COCO [68] datasets and is able to recognize

more than 9000 objects. We apply YOLO9000 on the ten

videos from the dataset, and generate the annotated videos
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TABLE III
THE PERFORMANCE OF FUTURE-AWARE NETWORK WITH OVV

(ds, dv) = (30◦, 60◦)
Model Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 87.31% 0.714 86.03% 0.686

512 2 F 82.57% 0.602 81.54% 0.582

1024 2 T 89.22% 0.764 87.71% 0.733

2048 2 T 89.72% 0.778 87.93% 0.742

(ds, dv) = (45◦, 90◦)
Model Parameters Training Set Testing Set

No.

Neurons

LSTM

Layers
Dropout Accuracy F-Score Accuracy F-Score

256 2 F 86.71% 0.702 85.35% 0.674

512 2 T 84.83% 0.647 83.59% 0.620

1024 2 T 88.36% 0.745 86.94% 0.716

2048 2 T 88.63% 0.753 87.09% 0.722

with different projection models and OVV. We report the

correctly detected results in Fig. 10(c). This figure clearly

demonstrates that OVV significantly increases the number of

correctly detected objects. Note that all projection models

detect no objects in video 6 and 7 since these two videos are

of landscapes and 2D games, which have almost no real-world

objects.

In sum, the performance of the existing CV algorithms

designed and trained for 2D images/videos are improved by

our proposed OVV, which is a unified approach to apply them

on 360◦ videos. In the next section, we integrate OVV with

our proposed fixation prediction network.

D. Fixation Prediction with OVV

We perform saliency detection on virtual viewports and

stitch the saliency maps of virtual viewports into one image

for each frame. The stitched saliency maps then replace

the original equirectangular saliency maps as the inputs of

the fixation prediction networks. We consider two different

configurations of OVV: (i) (ds, dv)=(30◦, 60◦) and (ii) (ds,

dv)=(45◦, 90◦). We then train the proposed neural network

using these two OVV setups and report sample results in

Table III. The optimal parameters and results are in bold

fonts. This table shows that the performance of the future-

aware network with OVV is better when (ds,dv)=(30◦,60◦).

Moreover, it outperforms the equirectangular projection model

in terms of accuracy and F-score reported in Table I. Thus, we

adopt OVV with (ds,dv)=(30◦,60◦) as the fixation prediction

network in the rest of this article.

E. Validation with Additional Videos/Viewers

To understand the generality of our proposed prediction

model, we validate our trained model with additional videos

and viewers.

Setup. We perform prediction on five new 360◦ videos

downloaded from YouTube at 3840x1920 resolution and 30

fps. We cut them into the same length of 30 seconds. Table IV

lists the considered videos. We recruit 30 viewers between

19 and 28 years old. Among them, about 2/3 are males.

All viewers are asked to freely watch the five videos in

random order. The viewer orientation are logged when they

are watching the videos. We consider Ban et al. [31], which is

introduced in Sec. II-A, as our baseline and call it CUB3602.

Because CUB360 employs KNN for prediction, we perform

3-fold validations on CUB360, where 10 viewers are used as

the testing set, and 20 viewers are used as the KNN inputs.

For our prediction network, we use the model derived in the

previous section to predict the viewing probabilities of each

tile on all the traces from the 30 viewers viewing the five

videos. We note that the comparisons give CUB360 a slight

edge of peeking into the new videos/viewers.

TABLE IV
VALIDATION VIDEOS

Video Time Interval Link

Snow Boarding 01:30–02:00 https://goo.gl/2H4RxM

Elephants 00:50–01:20 https://goo.gl/aejCVM

Sharks 00:05–00:35 https://goo.gl/BUEBG9

CERN 01:50–02:20 https://goo.gl/68gDAZ

London 00:40–01:10 https://goo.gl/YRN1kN

Results. Table V reports the performance in accuracy and F-

score for our proposed prediction network and CUB360 under

different K-nearest viewpoints selection. To be conservative,

we grid-search on the thresholds to round the probabilities to

boolean decisions and report the absolutely optimal solution

of CUB360 for each K value. This table shows that although

CUB360 references the K-nearest viewpoints from other view-

ers on the same video, our prediction network still achieves at

least 8.7% higher accuracy without peeking into these traces.

The results demonstrate the generality of our proposed

fixation prediction network. In terms of CUB360, increasing K

do not always improve the performance. This is because other

viewers’ fixation may be misleading, since different viewers

may have quite diverse viewing behavior. In contrast, our

proposed fixation prediction network is trained with other 360◦

videos and also takes the current viewer’s past orientation into

account. This makes our prediction algorithm more robust.

In addition to CUB360, Nguyen et al. [33] also propose

a head movement prediction network using LSTM, which

employs the same network architecture as our preliminary

study [15], while introducing three improvements as we detail

in Sec. II-A. While we are not able to compare with their

work, applying their enhancements in our systems will likely

boost our performance further.

VII. EVALUATIONS

In this section, we evaluate the performance of our 360◦

video streaming system with the future-aware network and

2While we also want to consider Nguyen et al. [33] as another baseline,
we couldn’t do so because some of their parameters are not made public yet
at the time of writing.

TABLE V
THE PERFORMANCE OF DIFFERENT PREDICTION ALGORITHMS

Prediction Algorithm Accuracy F-Score

Our 81.8% 63.1%

CUB360

K=0 73.1% 31.0%
K=2 73.0% 53.4%
K=5 73.0% 54.3%
K=10 72.2% 54.6%
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OVV. We conduct the evaluations through simulations, be-

cause: (i) the viewer behavior can be repeated for fair compar-

isons among different algorithms, and (ii) more traces/subjects

can be leveraged at a relatively lower cost.

Tiled-Segment Requests

Client

Internet

Server

Request

Handler

Video

Streamer

Request

Generator

Video

Receiver

Video

Player

Viewer 

Trace

Video Packets

Fixation Prediction

Algorithm

Fig. 11. The streaming server and client in our simulator.

A. Implementations

We have implemented two other prediction algorithms using

Python: (i) Cur, which uses the current orientation as the

prediction in the next segment and (ii) Dead Reckoning

(DR)3 [46], which computes a weighted moving average

of the viewer orientation velocity for prediction. We have

implemented a simulator using C++ based on NS-3 [69] and

DASH simulator [70]. We modify the simulator to read the

real traces of viewing 360◦ videos, which contains sizes of

the transmitted tiles. We implement our proposed fixation

prediction network and the other two baseline algorithms in the

fixation prediction algorithm as shown in Fig. 11. In addition,

there are five more components: (i) the request generator, (ii)

the request handler, (iii) the video streamer, (iv) the video

receiver, and (v) the video player. The request generator reads

the viewer traces and invokes one of the prediction algorithms

to generate requests. The request handler parses the received

requests. The video streamer encapsulates the tiles into packets

and sends them to the video receiver. After the video player

reaches an initial buffering time and receives enough number

of segments, the video is played until there is no segment

available in the receiving buffer. If a segment is not received

in time, a rebuffering event is logged and the player pauses

the video until the next segment is received.

B. Setup

We use all the traces from the testing set (see Sec. V),

98 traces in total, to drive our simulations. We encode these

videos into 20x10 tiles, where each tile has 192x192 pixels,

with a QP of 28 using Kvazaar [71] and divide them into 1-

sec segments using MP4Box. We assume that the network

bottleneck is at the client side, therefore, we repeat the

simulations with three access networks: (i) (fixed) Broadband,

(ii) WiFi, and (iii) 4G cellular network. We consider the

average bandwidth (latency) of the above networks in our

simulator as 43.2 (3 ms), 37.1 (10 ms), and 12.7 (40 ms) Mbps,

respectively, following recent white papers [72], [73]. To

3There are two variants of DR prediction: based on the past velocity or on
both past velocity and acceleration. We implement the DR algorithm based
on the past velocity in our simulations, following a recent work [46].

accommodate the latency caused by networks and protocols,

we run fixation prediction algorithms a couple of seconds4

ahead of the current playout time.

We consider the following performance metrics:

• Missing ratio. The fraction of unavailable tiles at the

client over all tiles that are watched by the viewer. Higher

missing ratio leads to more holes (missing tiles) in the

360◦ videos.

• Unseen ratio. The fraction of the tiles at the client

that are not watched by the viewer over all transmitted

tiles. Higher unseen ratio indicates more wasted network

resources.

• Bandwidth consumption. The consumed bandwidth

used to stream the predicted tiles.

• Peak bandwidth. The peak bandwidth consumption due

to streaming the predicted tiles.

• Video quality. We employ the objective quality metric

V-PSNR, which is proposed for 360◦ videos [74] and

adopted by JVET [75]. V-PSNR is essentially the Peak

Signal-to-Noise Ratio (PSNR) value of a viewer’s view-

port. We use the ground truth of viewports in the datasets

to calculate V-PSNR values.

• Total rebuffering time. The total rebuffering time

throughout each 1-min playout.

Some pilot simulations reveal that the missing ratio are non-

trivial for our and baseline solutions: more than 15% missing

ratio are observed. To be practical, we augment our solution

to ensure sub-τ missing ratio by adjusting ρ, where target

missing ratio: τ ∈ {1%, 5%, 10%}. The default τ is 10% if not

otherwise specified. For Cur and DR, we iteratively add new

tiles at the edge of predicted tiles for δCur and δDR times to

accommodate the inferior missing ratio, respectively. Besides,

the missed tiles are assumed to be concealed by replaying the

last received tiles during video playback. In the next section,

we report the simulation results with 95% confidence intervals

whenever applicable.

C. Results

Our fixation prediction network consumes less net-

work bandwidth at any target missing ratio. To meet

τ ∈ {1%, 5%, 10%}, δCur and δDR are set to 1, which

lead to ρ = {0.008, 0.027, 0.053}, respectively. We plot

the bandwidth consumption under different networks with

different τ values in Fig. 12. In this figure, Cur and DR show

high bandwidth consumption. On the other hand, with properly

selected ρ, our fixation prediction network can reduce about 2,

6, and 8 Mbps in bandwidth consumption compared to Cur and

DR in Broadband and WiFi networks. Note that the available

bandwidth of the 4G cellular network is too scarce, and is

used up no matter which algorithm is adopted.

Fig. 13 plots the unseen ratio under different target missing

ratios τ . This figure shows that our fixation prediction network

reduces the unseen ratio by 5%. The reduction becomes 10%

and 15% when τ = 5% and τ = 10%, respectively. In

4Increasing it to 4 seconds or reducing it to 1 second results in similar
results.
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Fig. 12. The bandwidth consumption in different networks with different target missing ratio: (a) τ = 1%. (b) τ = 5%, and (c) τ = 10%.
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Fig. 13. The unseen ratio under different target missing ratios.

TABLE VI
VIDEO QUALITY UNDER DIFFERENT PREDICTION ALGORITHMS

(V-PSNR IN DB)

Missing Ratio 1% 5% 10%

Prediction
Algorithm

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

Cur 38.62 42.03 47.58 38.63 42.03 47.58 38.62 42.03 47.58

DR 38.70 42.05 47.64 38.70 42.05 47.64 38.70 42.05 47.64

Our 38.39 42.08 47.89 37.24 41.63 47.27 36.11 41.11 46.66

summary, Figs. 12 and 13 show that our fixation prediction

network consumes less bandwidth due to fewer unseen tiles.

Our fixation prediction network leads to shorter re-

buffering time. We plot the total rebuffering time under

different networks in Fig. 14(a). This figure shows that all

considered prediction algorithms lead to no rebuffering event

in Broadband and WiFi networks. However, the rebuffering

events occur in all the considered prediction algorithms under

bandwidth-limited 4G cellular networks. It is worth to note

that our fixation prediction network has shorter rebuffering

time than other algorithms in 4G cellular networks: up to

40 second reduction. Fig. 14(b) presents the total rebuffering

time under different initial buffering time in 4G networks.

This figure shows that the rebuffering time is reduced as the

TABLE VII
CONSUMED BANDWIDTH UNDER DIFFERENT PREDICTION ALGORITHMS

(MBPS)

Missing Ratio 1% 5% 10%

Prediction
Algorithm

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

Cur 21.11 23.99 24.42 21.11 23.99 24.42 21.11 23.99 24.42

DR 21.13 24.02 24.23 21.13 24.02 24.23 21.13 24.02 24.23

Our 17.13 21.88 24.10 14.08 18.04 22.23 12.26 15.85 20.48

initial buffering time increases. However, the total rebuffering

time is still non-negligible to the 60-sec streaming session.

This indicates the importance of rate adaptation for streaming

system. In our future work, we may choose lower bitrates for

the selected tiles that have lower predicted viewing probability

to further reduce the bandwidth consumption.

Our fixation prediction network requires less available

bandwidth to avoid rebuffering events. To understand the

minimum available bandwidth required to avoid rebuffering

events without rate adaptation, we conduct simulations under

different available bandwidth and plot the results in Fig. 15.

This figure shows that our fixation prediction network gets rid

of rebuffering events while the available bandwidth is higher

than 25 Mbps, which is approximately 10 Mbps less than other

algorithms. We note that recent survey [73] reports that the

mean available bandwidth of 4G cellular networks is less than

15 Mbps in North America. Hence, we do not consider 4G

cellular networks in the rest of this article. The limitation of

the current 4G cellular networks are likely to be lifted in the

future, as 4G/5G cellular networks continue to advance.

Our fixation prediction network achieves comparable

video quality at lower bandwidth consumption. We dig a

bit deeper and report the minimum, average, and maximum

of video quality of the considered prediction algorithms in

Table VI. This table shows that our fixation prediction network

has comparable video quality compared to other algorithms.

The minimum, average, and maximum of the consumed band-

width are given in Table VII, which shows that our algorithm

consumes less bandwidth. Combining these two tables, we

observe that, with τ = 1%, our prediction network saves

about 9% of the bandwidth, while achieving similar video

quality. In addition, it reduces about 8 Mbps in bandwidth

consumption while only sacrifices less than 1 dB video quality

on average when τ = 10%. Fig. 16 plots the video quality

of individual traces from all viewers in WiFi networks. This

figure shows that our solution leads to the points located at

the left to the points from other solutions, which confirms the

above observations.

Our fixation prediction network has short training and

prediction time. We run the training and prediction process on

an Intel 32-core Xeon server with a Nvidia 1080Ti GPU. We

report the training time of each parameter setting in Table VIII.

We note that some training sessions take less than 1 hour. This
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Fig. 14. The total rebuffering time under: (a) different networks and (ii) different initial buffering
time.
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Fig. 16. The relation between video quality and bandwidth consumption
observed under individual traces in WiFi networks.

TABLE VIII
THE TRAINING TIME IN MINUTE

No. Neurons 256 512 1024 2048

Dropout T F T F T F T F

No.

Layers

1 105 109 78 108 120 125 67 103
2 47 50 95 59 50 71 89 83
3 83 105 47 77 119 65 123 69

may be attributed to the early stop (see Sec. V) adopted by

the training process. Fig. 17 plots the prediction time from

a sample trace. This figure shows that the prediction time of

the next segment is always less than 90 ms for this trace. The

average and maximum running time for each prediction across

all testing traces are 88.74 ms and 124 ms, respectively, which
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Fig. 17. The prediction time from a sample trace.

are relatively short compared to, for example, 2-sec segments.

TABLE IX
THE MOS AND CONSUMED BANDWIDTH FROM THREE SAMPLE TRACES

Trace
MOS Bandwidth (Mbps)

Cur DR Our Cur DR Our

Roller Coaster 3.14 2.86 2.86 24.35 24.33 15.32

Hog Rider 3.43 3.43 3.43 24.18 24.21 13.32

SFR Sport 3.14 3.00 3.29 24.19 24.25 13.71

Average 3.24 3.10 3.20 24.24 24.26 14.12
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Fig. 18. The missing ratio of our prediction algorithm on the considered
random traces. Roller Coaster, in general, suffers from higher missing ratio.

D. A Small-Scale User Study

We conduct a user study to understand the correlation

between V-PSNR and user experience. We randomly select

three sample user traces (one for each video category) from

the testing set (see Sec. V). The considered videos are: (i)

Roller Coaster, (ii) Hog Rider, and (iii) SFR Sport. We use

our prediction algorithm and baseline algorithms to predict

the fixations with a missing ratio of τ < 10%. No error

concealment is performed. For each prediction algorithm, we

generate viewport videos from the predicted tiles according to

the sensor data (yaw, roll, and pitch) from the trace, where

the viewports are in 1066×1066 resolution (equivalent to

100◦×100◦). In total, nine (three traces with three prediction

algorithms) viewport videos are generated. We play the view-

port videos to seven subjects, who provide user experience

scores in the 1 (worst) - 5 (best) scale. We disable the inertial
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Fig. 19. A reference framework of the 360◦ video streaming systems with the proposed fixation prediction network. A pull-based system is shown.

sensors on the HMDs, so that all subjects watch exactly the

same viewport videos following the head movements of the

sample user trace. For each pair of the trace and prediction

algorithm, we compute the Mean Opinion Score (MOS) across

the user experience scores from all subjects.

We report the MOS and consumed bandwidth in Table IX.

This table shows that, compared to the baseline algorithms, our

solution achieves very similar average MOS for all sample

videos, yet saves about 41% bandwidth on average. This

table also reveals that our prediction algorithm suffers from

an inferior MOS score, with Roller Coaster, than the Cur

algorithm. We plot the missing ratio of our algorithm on

the considered three traces over time in Fig. 18. This figure

shows that our algorithm leads to higher missing ratio on

Roller Coaster compared to the other two traces. A deeper

investigation shows that the higher missing ratio is due to the

higher maximum head rotation speed in Roller Coaster trace.

More precisely, it is about 35.37 degree/s in yaw direction,

which is higher than that of other two traces by up to 14

degree/s. In particular, the maximum rotation speed occurs at

50 s, which is inline with the peak (highlighted with the circle)

in Fig. 18. We cross check the V-PSNR values of Our and Cur

algorithms with Roller Coaster: which are 34.37 and 38.35 dB,

respectively. The V-PSNR values are consistent with our MOS

results.

In summary, our preliminary user study results (about 40%

bandwidth saving) are inline with our earlier experiments

using V-PSNR. Our user study also reveals that improving the

fixation prediction accuracy for even lower missing ratio is

important. It is, however, possible to cope with the imperfect

fixation prediction using some innovative networking tools.

For example, recent studies [76], [77] leverage emerging

network protocols, such as HTTP/2 and QUIC [78], to stream

critical tiles over high-priority concurrent streams, in order to

avoid missing tiles (holes).

VIII. CONCLUSION AND FUTURE WORK

360◦ video streaming has become increasingly popular.

However, their extremely large file sizes impose high loads on

networks. In this article, we propose to leverage both sensor

and content features to predict the viewing probability of each

tile in future frames, in order to reduce the network loads

and improve the video quality. Several novel enhancements

are proposed to improve the prediction performance, including

generating virtual viewports, considering future content, reduc-

ing the feature sampling rate, and training with larger datasets.

We conduct extensive simulations using real traces to quantify

the performance of our proposed solution. The evaluation

results show that compared to other algorithms, our proposed

fixation prediction network achieves comparable video quality

while: (i) saving about 8 Mbps in bandwidth consumption

and (ii) cutting the rebuffering time by 40-sec. Besides, our

proposed prediction network estimates tile viewing probability

in almost real-time.

We note that the proposed fixation prediction network is

only a component of 360◦ video streaming systems. Integrat-

ing it with existing RTP or DASH video streaming systems

require additional efforts beyond what have been done in

Sec. VII. Fig. 19 shows a reference framework of 360◦ video

streaming systems. It contains three entities: (i) the production

server, which compresses and analyzes raw 360◦ videos into

encoded videos and content features, (ii) the streaming server,

which helps the client to predict the viewer fixation using the

fixation prediction network, and (iii) the client, which sends

the HMD sensor readings to the streaming server and renders

360◦ videos to the HMD viewer.

There are quite a few open challenges for researchers and

developers to turn this reference framework into a reality,

including:

• Bitrate allocator: It is a component in the HMD client,

which distributes the available bitrate among tiles fol-

lowing the predicted viewing probability and network

conditions. Designing an optimal bitrate allocator is one

of our current tasks (see Sec. VII-C).

• DASH enhancements: Additional control messages are

exchanged between the streaming server and the client.

For example, the tile viewing probability is predicted at

the fixation prediction network on the streaming server,

which needs to be sent to the client. Another example is

the sensor features, which needs to be sent from the client

to the streaming server. Designing a DASH-compatible

way for the exchanging of control messages is another

future task.

• Streaming protocols: The pull-based protocol, e.g.,

HTTP/1.1, adopted by conventional DASH leads to

higher latency because of the HTTP requests generated

from client. Thus, a push-based protocol, e.g., RTP and

HTTP/2.0, may be leveraged to reduce the latency by

getting rid of some extra control messages. Besides,

both HTTP/2 and QUIC [78] support multiplexed and

prioritized streams that can be adopted to avoid the

negative impacts of inaccurate fixation prediction.

• User study procedure: High resolution and low latency

are becoming crucial in 360◦ video streaming systems

to provide immersive experience. However, a trade-off

between them exists due to the limitations on networking

and computing resources. Therefore, a comprehensive

user study procedure is needed to better quantify the



C. FAN ET AL.: OPTIMIZING FIXATION PREDICTION USING RECURRENT NEURAL NETWORKS FOR 360◦ VIDEO STREAMING IN HEAD-MOUNTED VR 15

impacts of different streaming parameters (e.g., resolu-

tion, frame rate, latency, and content types) on viewer

experience. Some preliminary work has been done, e.g.,

in Yao et al. [79].
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